
Models, Sketches and Everything In-Between

Simon Brown 	 Coding the Architecture 
Eoin Woods	 	 Artechra

!
Software Architect 2014 
October 2014, London

Welcome

• It’s hello from me
• Simon Brown, Coding the Architecture

!

• And hello from him
• Eoin Woods, Artechra

Our Agenda

• Simon Says …

• Eoin Says …

• Questions and Queries:
	 Q1. Modelling - Why Bother?
	 Q2. Models and Agility
	 Q3. How to Do It?
	 Q4. UML - Worth the Hassle?
	 Q5. Modelling in the Large vs the Small

• Summary and Conclusions

Background

• We’ve been talking about software modelling for ages
• We both think its a good idea (in moderation)
• Simon likes boxes and lines, Eoin likes UML (sort of)
• Simon has C4, Eoin has V&P (with Nick Rozanski)
• We’ve both inflicted a book on the world …

!

• We’d like to work out what the real answer is today
• We’ve got questions, but yours are probably better

The Point of Modelling

• Simon:
• How do you understand what you’re building?
• How do you explain it to the rest of the team?
• The trick is not getting stuck in analysis paralysis.

• Eoin:
• Main problem with not modelling is lack of intellectual control
• Main problem with modelling is believing that modelling is an

end in itself

Some Opinions

Simon Says …

How do we

communicate

software architecture?

9 out of 10 people

don’t use UML

(in my experience)

It’s usually difficult to
show the entire design on

a single diagram

Different views of
the design can be used to
manage complexity and

highlight different aspects
of the solution

Do the names

of those views make

sense?

Development vs Physical

Process vs Functional

Conceptual vs Logical

Development vs Implementation

Physical vs Implementation

Physical vs Deployment

Logical and

development

views are often

separated

In my experience,

software teams
aren’t able to

effectively
communicate

the software
architecture

of their systems

Abstraction

is about reducing detail

rather than creating a different representation

Abstractions help us

reason about

a big and/or complex

software system

A common set of
abstractions

is more important than

a common notation

Sketches are maps

that help a team navigate a complex codebase

Static

Model

(at different levels

of abstraction)

Runtime/
Behavioural

Deployment

Infrastructure
Operation

& Support

Data

Does your code reflect the

abstractions

that you think about?

My focus is primarily on the

static structure

of software, which is ultimately about

code

Software developers are
the most important

stakeholders
of software architecture

Eoin Says …

The point is that …

•Some models worth creating are worth
preserving

•Models capture things that code can’t
•Sketches the place to start … but limited
•Models communicate, so ground rules are
useful - UML is a good base to work from

What is modelling?

•A model is any simplified representation of reality
• a spreadsheet of data
• a Java domain model
• a UML model

•Modelling represents concepts to allow some
aspect of them to be understood

Why create models?

Communicate

Understand

Record

Models vs diagrams

•A diagram is a purely visual representation
•A model contains definitions (and possibly a diagram)

• In UML terms diagrams provide views of a model

Types of Model

Low Detail

High Detail

High
Precision

Low
Precision

Uses for models

• Consistency
• change once, its changed everywhere

• Reporting
• ask your model a question
• “what is connected to the Flange Modulator Service?”

• Checking and Validation
• do I have a deployment node for every piece of the system?
• how complicated is the system going to be?

• Sharing information
• generate many views of a single model
• Powerpoint, wiki, tables, ...

An Analogy

• Would you use JSON to represent your shopping list?
• I personally use a PostIt™ note

• Would you hold system configuration in free text?
• I personally would rather XML or JSON

• Long lived models are valuable … store them as data
• UML is a practical option for machine readable models

Some Questions and Answers

Q1. Modelling - Why Bother?

• Simon:
• A model makes it easy to step back and see the big picture.
• A model aids communication, inside and outside of the team.
• Modelling provides a ubiquitous language with which to

describe software.

• Eoin:
• Modelling helps you understand what you have and need
• You can’t understand all of the detail anyway
• Code is in fact a model, we just don’t think of it as such

Q2. Modelling and Agility

• Simon:
• Good communication helps you move fast.
• A model provides long-lived documentation.
• A model provides the basis for structure, vision and risks.

• Eoin:
• No fundamental conflict - “model with a purpose” (Daniels)
• Working software over comprehensive documentation
• Agility should be for the long haul, not this sprint
• Can you know all the feed dependencies from your system?

Q3. How to Do It?

• Simon:
• Start with the big picture, and work into the detail.
• Stop when you get to a “sufficient” level of detail.
• Include technology choices!

• Eoin:
• Start small, start with a definite purpose
• Start with a whiteboard or a napkin or an A4 sheet
• Skip Visio and Omnigraffle … get a tool, get a model

Q4. UML - Is It Worth the Hassle?

• Simon:
• No.

• Eoin:
• Maybe … depends what you need
• Would you write a shopping list in JSON? Would you store

configuration settings in a free text file?
• If you have long lived models and want to use the data then

yes, highly tailored UML is worth the effort

Q5. Modelling in the Large vs the Small

• Simon:
• Sketches will quickly become out of date.
• Reverse-engineering tends to lead to cluttered diagrams.
• Many small diagrams are better than one uber-diagram.

• Eoin:
• A large system means you need help from a computer to

understand it
• However large your model, the code is still “the truth”
• Modelling languages scale like programming languages

How We Do It

Simon

Agree on a simple set of abstractions
that the whole team can use to communicate

Class Class Class

Component Component Component

Container
(e.g. web application, application server, standalone application,

browser, database, file system, etc)

Container
(e.g. web application

browser, database, file system, etc)

Container
(e.g. web application

browser, database, file system, etc)

Software System

The C4 model

Classes
Component or pattern implementation details

System Context
The system plus users and system dependencies

Containers
The overall shape of the architecture and technology choices

Components
Logical components and their interactions within a container

Context

!

•What are we
building?

!

•Who is using it?
(users, actors, roles,
personas, etc)

!

•How does it fit into
the existing IT
environment?
(systems, services, etc)

Containers

!

•What are the high-level
technology decisions?
(including responsibilities)

!

•How do containers
communicate with one
another?

!

•As a developer, where
do I need to write
code?

Components
!
•What components/
services is the
container made up of?

!
•Are the technology
choices and
responsibilities clear?

structurizr.com

Eoin

Common Types of Models

•System Environment - context view
•Run Time Structure - functional view
•Software meets Infrastructure - deployment view
•Stored and In-Transit Data - information view

The Viewpoints and Perspectives model

Context View 
(where the system lives)

Functional View  
(runtime structure)

Information View 
(data moving & at rest)

Development View  
(code structures)

Concurrency View  
(processes and threads)

Deployment View 
(system meets infra)

Operational View  
(keeping it running)

Context View
Component diagram with a single “component” - your system

External systems represented as <<external>> components

Interactions with external systems using named associations

User groups represented by actors

Functional View
Packages (or components) for runtime containers

Stereotyped components for your software elements

Usage dependencies to show possible communication paths (again stereotype)

Classes for
connectors

Deployment View
Show the hosts you need to run your components

Execution environments can be used to show the runtime containers you use for your components

Packages can show locations or other groupings of hosts

Artifacts are used to show where your system binaries reside for execution

Summary and Conclusions

What We Have Talked About

• Modelling is terrifically useful
• communication
• clarity
• analysis

• Many ways of doing it
• napkins to UML tools

• The key point is to get value from what you do
• don’t get stuck in “analysis paralysis”

Eoin Woods 
www.eoinwoods.info  

@eoinwoodz

Questions?

Simon Brown 
www.codingthearchitecture.com  
@simonbrown

